᠎᠎᠎          
51K

Mcworter dendrite fractal

World's simplest fractal tool
This utility lets you draw your own original McWorter dendrite fractals. You can choose between four dendrite types – pentadendrite, hexadendrite, octadendrite and a single dendrite branch. There are also two extra drawing modes available – the starfish fractal mode and open fractal mode that create even more possibilities (see description below for more details). You can adjust the size and color of the drawing canvas and set its padding. You can also adjust the number of iterations, choose the rotation of the fractal (clockwise or counterclockwise), and its direction (right, left, up or down). Finally, you can choose the thickness of the fractal curve, adjust its color, and fill the inside of the fractal with any color. Fun fact – the McWorter fractal consists of a set of six-fold zigzags that don't overlap and have a 5-fold symmetry. Created by fractal fans from team Browserling. Fractabulous!
We created a cloud browser! Browserling
Check out our project Browserling – anonymous cloud browser.
Dendrite Fractal Types
Draw the fractal from five dendrites.
Draw the fractal from six dendrites.
Draw the fractal from eight dendrites.
Draw the fractal from a single dendrite.
Iterations, Size and Modes
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing inside the polygon. (Create an anti-dendrite.)
Make a gap between the dendrites.
The angle of fractal's gap.
Colors, Line and Frame
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

What is a mcworter dendrite fractal?

learn more about this tool
This online browser-based tool creates unique and colorful McWorter dendrite fractals. The McWorter dendrite fractals are a family of symmetric and self-similar fractals that consists of dendrite subfractals. The dendrite curve is a variation of McWorter's pentigree (short for pentagon filigree). It's constructed from a zig-zag of six segments, which are bent at angles of 72, 72, 144 (2x72), 72, and 72 degrees. The fractal starts with a unit segment and with each step, each segment is replaced with this zigzag. If this process is repeatedly iterated, then a dendrite fractal is formed. McWorter's pentadendrite is formed by sequentially connecting five copies of the dendrite curve that are pointing outside the pentagon. Similarly, the hexadendrite and octadendrite are a connection of six and eight dendrites. Dendrites can also be connected in such a way that they point inside the polygon. This case is illustrated if the "Starfish Mode" option is enabled. This mode reverses the direction of dendrite fibers and creates a starfish fractal. The "Open Mode" cuts the fractal open and creates a gap between the dendrites. This fractal (just like many others) was discovered by accident by William A. McWorter as he was experimenting with a BASIC program that generates dragon curves. Mind blowing and ingenious at the same time, or as we love to say – fractabulous!

Mcworter dendrite fractal examples

Click to use
Pentadendrite Fractal
In this example, we generate the McWorter's pentadentrite fractal, which is created from five touching dendrites pointing outside the pentagon. We set the rotation of the fractal to counterclockwise and generate the fifth iteration step on a Koamaru deep blue color canvas of 600 by 600 pixels.
In this example, we generate the McWorter's pentadentrite fractal, which is created from five touching dendrites pointing outside the pentagon. We set the rotation of the fractal to counterclockwise and generate the fifth iteration step on a Koamaru deep blue color canvas of 600 by 600 pixels.
Required options
These options will be used automatically if you select this example.
Draw the fractal from five dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing inside the polygon. (Create an anti-dendrite.)
Make a gap between the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.
Starfish Pentadendrite
This example applies the "Starfish Mode" to the pentadentrite fractal. In this case, all five dendrites point inside the pentagon and as a result, we get a fractal that is very similar to a starfish! We draw a 4th order curve on a Malibu color canvas, using a black line and golden-fizz color fill.
This example applies the "Starfish Mode" to the pentadentrite fractal. In this case, all five dendrites point inside the pentagon and as a result, we get a fractal that is very similar to a starfish! We draw a 4th order curve on a Malibu color canvas, using a black line and golden-fizz color fill.
Required options
These options will be used automatically if you select this example.
Draw the fractal from five dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing inside the polygon. (Create an anti-dendrite.)
Make a gap between the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.
Hexadendrite Fractal
In this example, we generate a hexadendrite fractal and make the dendrites grow outside the hexagon. As there the hexagon has six sides, the dendrites are much more spread apart and the space that is formed inside the fractal is shaped like gecko lizard's fingers. We draw 5 iterations on a Klein-blue color background and fill gecko's paws with a Harlequin-green color.
In this example, we generate a hexadendrite fractal and make the dendrites grow outside the hexagon. As there the hexagon has six sides, the dendrites are much more spread apart and the space that is formed inside the fractal is shaped like gecko lizard's fingers. We draw 5 iterations on a Klein-blue color background and fill gecko's paws with a Harlequin-green color.
Required options
These options will be used automatically if you select this example.
Draw the fractal from six dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing inside the polygon. (Create an anti-dendrite.)
Make a gap between the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.
Octadendrite Fractal
It this example, we draw three clockwise recursions of an octadendrite fractal on a 600x600px canvas with 10px padding. This fractal consists of eight dendrite fibers that connect at an angle of 45 degrees. This construction makes it look a bit similar to the Koch snowflake fractal.
It this example, we draw three clockwise recursions of an octadendrite fractal on a 600x600px canvas with 10px padding. This fractal consists of eight dendrite fibers that connect at an angle of 45 degrees. This construction makes it look a bit similar to the Koch snowflake fractal.
Required options
These options will be used automatically if you select this example.
Draw the fractal from eight dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing inside the polygon. (Create an anti-dendrite.)
Make a gap between the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.
Open Pentadendrite
In this example, we apply the "Open Mode" to the pentadendrite fractal. As a result, we get a 15-degree opening between the first and last dendrites. In this drawing mode, the fractal can't be filled as it's not connected.
In this example, we apply the "Open Mode" to the pentadendrite fractal. As a result, we get a 15-degree opening between the first and last dendrites. In this drawing mode, the fractal can't be filled as it's not connected.
Required options
These options will be used automatically if you select this example.
Draw the fractal from five dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing inside the polygon. (Create an anti-dendrite.)
Make a gap between the dendrites.
The angle of fractal's gap.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.
A Dendrite Fiber
This example shows an individual dendrite subfractal fiber at its 5th iteration that all other fractals are made out of. At 72 degrees it has 5-fold symmetry creates a pentadentrite, at 60 degrees it has 6-fold symmetry and creates a hexadentrite and at 45 degrees it has 8-fold symmetry and creates an octadentrite. It also has several other symmetries that are less interesting.
This example shows an individual dendrite subfractal fiber at its 5th iteration that all other fractals are made out of. At 72 degrees it has 5-fold symmetry creates a pentadentrite, at 60 degrees it has 6-fold symmetry and creates a hexadentrite and at 45 degrees it has 8-fold symmetry and creates an octadentrite. It also has several other symmetries that are less interesting.
Required options
These options will be used automatically if you select this example.
Draw the fractal from a single dendrite.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing inside the polygon. (Create an anti-dendrite.)
Make a gap between the dendrites.
The angle of fractal's gap.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.
Pro tips Master online fractal tools
You can pass options to this tool using their codes as query arguments and it will automatically compute output. To get the code of an option, just hover over its icon. Here's how to type it in your browser's address bar. Click to try!
https://onlinefractaltools.com/draw-mcworter-dendrite-fractal?&width=600&height=600&iterations=5&background-color=%23171594&line-segment-color=white&fill-color=%23336699&line-width=3&padding=10&pentadendrite=true&starfish-mode=false&open-mode=false&rotation=counterclockwise&direction=up
All fractal tools
Didn't find the tool you were looking for? Let us know what tool we are missing and we'll build it!
Quickly draw a custom McWorter dendrite fractal.
Quickly draw a custom canopy tree fractal.
Quickly draw a custom Gosper fractal.
Quickly draw a custom Z-order fractal.
Quickly draw a custom Hilbert fractal.
Quickly draw a custom binary v-fractal.
Quickly draw a custom Peano fractal.
Quickly draw a custom Heighway dragon fractal.
Quickly draw a custom twin dragon Heighway fractal.
Quickly draw a custom Heighway nonadragon fractal.
Quickly draw a custom Koch fractal.
Quickly draw a custom triflake fractal.
Quickly draw a custom Sierpinski triangle fractal.
Quickly draw a custom Sierpinski pentagon fractal.
Quickly draw a custom Sierpinski hexagon fractal.
Quickly draw a custom Sierpinski polygon fractal.
Quickly draw a custom Moore fractal.
Quickly draw a custom Cantor comb fractal.
Quickly draw a custom Cantor dust fractal.
Quickly draw a custom Levy fractal curve.
Quickly draw a custom ice fractal.
Quickly draw a custom Pythagoras tree fractal.
Quickly draw a custom t-square fractal.
Quickly draw a custom Hausdorff tree fractal.
Coming soon These fractal tools are on the way
Generate a Hilbert Sequence
Walk the Hilbert fractal and enumerate its coordinates.
Generate a Peano Sequence
Walk the Peano fractal and enumerate its coordinates.
Generate a Moore Sequence
Walk the Moore fractal and enumerate its coordinates.
Generate a Hilbert String
Encode the Hilbert fractal as a string.
Generate a Peano String
Encode the Peano fractal as a string.
Generate a Moore String
Encode the Moore fractal as a string.
Generate a Cantor String
Encode the Cantor set as a string.
Generate a Dragon String
Encode the Heighway Dragon as a string.
Generate a Sierpinski String
Encode the Sierpinski fractal as a string.
Sierpinski Pyramid
Generate a Sierpinski tetrahedron (tetrix) fractal.
Cantor's Cube
Generate a Cantor's cube fractal.
Menger Sponge
Generate a Sierpinski-Menger fractal.
Jerusalem Cube
Generate a Jerusalem cube fractal.
Mosely Snowflake
Generate a Jeaninne Mosely fractal.
Mandelbrot Tree
Generate a Mandelbrot tree fractal.
Barnsey's Tree
Generate a Barnsley's tree fractal.
Barnsey's Fern
Generate a Barnsley's fern fractal.
Binary Fractal Tree
Generate a binary tree fractal.
Ternary Fractal Tree
Generate a ternary tree fractal.
Dragon Fractal Tree
Generate a dragon tree fractal.
De Rham Fractal
Generate a de Rham curve.
Takagi Fractal
Generate a Takagi-Landsberg fractal curve.
Peano Pentagon
Generate a Peano pentagon fractal curve.
Tridendrite Fractal
Generate a tridendrite fractal curve.
McWorter's Pentigree
Generate a Pentigree fractal curve.
McWorter's Lucky Seven
Generate a lucky seven fractal curve.
Eisenstein Fractions
Generate an Eisenstein fractions fractal curve.
Bagula Double V
Generate a Bagula double five fractal curve.
Julia Set
Generate a Julia fractal set.
Mandelbrot Set
Generate a Mandelbrot fractal set.
Mandelbulb Fractal
Generate a Mandelbulb fractal.
Mandelbox Fractal
Generate a Mandelbox fractal.
Buddhabrot Fractal
Generate a Buddhabrot fractal.
Burning Ship Fractal
Generate a Burning Ship fractal.
Toothpick Fractal
Generate a toothpick sequence fractal.
Ulam-Warburton Fractal
Generate an Ulam-Warburton fractal curve.
ASCII Fractal
Generate an ASCII fractal.
ANSI Fractal
Generate an ANSI fractal.
Unicode Fractal
Generate a Unicode fractal.
Emoji Fractal
Generate an emoji fractal.
Braille Fractal
Generate a braille code fractal.
Audio Fractal
Generate a fractal in audio form.
Draw a Pseudofractal
Create a fractal that looks like one but isn't a fractal.
Convert Text to a Fractal
Generate a fractal from any text.
Convert a String to a Fractal
Generate a fractal from a string.
Convert a Number to a Fractal
Generate a fractal from a number.
Merge Two Fractals
Join any two fractals together.
Draw a Random Fractal
Create a completely random fractal.
Iterate an IFS
Set up an arbitrary IFS system and iterate it.
Run IFS on an Image
Recursively transform an image using IFS rules.
Iterate an ICAF
Run infinite compositions of analytic functions.
Generate a Fractal Landscape
Create a surface that mimics a natural terrain.
Generate a Brownian Surface
Create a fractal surface via Brownian motion.
Generate a Self-similar Image
Apply fractal algorithms on your image and make it self-similar.
Find Fractal Patterns in Images
Find fractal patterns in any given image.
Find Fractal Patterns in Text
Find fractal patterns in any given text.
Find Fractal Patterns in Numbers
Find fractal patterns in any given number.
Fill a Plane with Fractals
Tessellate a plane with fractals.
Run a Cellular Automaton
Run a cellular automaton with custom rules.
Play Game of Life
Play Conway's Game of Life on an infinite grid.